M1. (a) (i) chlorotrifluoromethane
Spelling must be correct but do not penalise "flouro" Ignore use of 1 -
(ii) CF_{3}.

May be drawn out with dot on C
OR if as shown dot may be anywhere
(iii) An unpaired/non-bonded/unbonded/free/a single/one/lone electron

NOT "bonded electron" and NOT "paired electron"
NOT "pair of electrons"
NOT "electrons"
Ignore "(free) radical"
(b) $\quad \mathrm{M} 1 \mathrm{Cl} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{ClO} \cdot+\mathrm{O}_{2}$
$\mathbf{M 2 ~ C I O} \cdot+\mathrm{O}_{3} \rightarrow \mathbf{2 O}_{2}+\mathrm{Cl} \cdot$
Mark independently
Equations could gain credit in either position
The dot can be anywhere on either radical
Penalise the absence of a dot on the first occasion that it is seen and then mark on. Do not make the same penalty in the next equation, but penalise the absence of a dot on the other radical.
Apply the list principle for additional equations
(c) (i) (If any factor is changed which affects an equilibrium), the (position of) equilibrium will shift/move so as to oppose the change.

OR

(When a system/reaction in equilibrium is disturbed), the equilibrium shifts/moves in a direction which tends to reduce the disturbance

Must refer to equilibrium
Ignore reference to "system" alone
A variety of wording will be seen here and the key part is the last phrase.
An alternative to shift/move would be the idea of changing/altering the position of equilibrium
(ii) M1 The (forward) reaction/to the right is endothermic or takes in heat

OR The reverse reaction/to the left is exothermic or gives out heat
M2 The equilibrium moves/shifts to oppose the increase in temperature
M2 depends on a correct statement for M1
For M2 accept
The equilibrium moves/shifts

- to take in heatllower the temperature
- to promote the endothermic reaction and take in
heat/ lower the temperature
- to oppose the change and take in heatllower the temperature
(leading to the formation of more ozone)
(d) Any one of
- Pentane does not contain chlorine OR $\underline{\mathrm{C}-\mathrm{Cl} \text { (bond) }}$
- Pentane is chlorine-free
- Pentane does not release chlorine (atoms/radicals)

Ignore reference to F OR C-F OR halogen
Ignore "Pentane is not a CFC"
Ignore "Pentane is a hydrocarbon"
Ignore "Pentane only contains C and H "
Ignore "Pentane is $\mathrm{C}_{5} \mathrm{H}_{12}$ "

M2. (a) (i) (Free-) radical substitution
Both words needed
(ii) UV light/Ultra-violet light/sunlight OR high temperature $/ 150^{\circ} \mathrm{C} \leq \mathrm{T} \leq 500^{\circ} \mathrm{C}$
(iii) Propagation (Step)

Ignore "first" or "second"
Accept phonetic spelling
(iv) M1 Termination (Step)

M2 $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \bullet \longrightarrow \mathrm{C}_{6} \mathrm{H}_{14}$ In M2
$\mathrm{C}_{6} \mathrm{H}_{14}$ may be drawn out as $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ The dot may be anywhere around the terminal CH_{2} on the radical

Accept $\mathrm{C}_{3} \mathrm{H}_{7} \cdot$ with dot anywhere
Penalise the absence of any radical dot
(v) $\mathrm{C}_{3} \mathrm{H}_{8}+8 \mathrm{Br}_{2} \longrightarrow \mathrm{C}_{3} \mathrm{Br}_{8}+8 \mathrm{HBr}$

Or multiples
(b) (i) M1 Double bonds are electron-rich

OR electron pair donors
OR centres of electron density.
M2 Bromine becomes polarised/becomes polar
OR forms an induced dipole
OR becomes $\delta+/ \delta-$

M1 QoL - require one of these terms
Ignore "(very) negative" and "nucleophile" as applied to the double bond.
Penalise M2 for ion formation from bromine
For M2, do not credit dipole formation solely as a consequence of electronegativity
(ii) Electrophilic addition

Both words needed
Accept phonetic spelling
(iii) Structure for 1,2,4,5-tetrabromopentane, for example $\mathrm{BrCH}_{2} \mathrm{CHBrCH}_{2} \mathrm{CHBrCH}_{2} \mathrm{Br}$

OR

Must be clear that they have drawn 1,2,4,5-tetrabromopentane and does NOT need to be displayed
Credit use of "sticks" for each C-H bond
(c) +

M1 Structure of $\mathrm{CH}_{3} \mathrm{CHCH}_{3}$
M2 (Secondary) Carbocation OR (secondary) carbonium ions Mark independently
For M1 the positive charge must be on the central carbon atom
Penalise bond to positive charge
Penalise answers which show more than the correct carbocation e.g. the mechanism, unless the intermediate is clearly identified
Credit use of "sticks" for each C-H bond
For M2, penalise "primary" or "tertiary"

M3. (a) (i) (free-)radical substitution (both words required for the mark)
(ii) uv light OR sunlight OR high temperature $\mathrm{OR} 150^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$
(iii) Propagation
(ignore "chain", "first", "second" in front of the word propagation)
(iv) Termination

$\mathrm{OR} 2 \cdot \mathrm{CH}_{2} \mathrm{CH}_{3} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10}$
(penalise if radical dot is obviously on CH_{3}, but not otherwise) (penalise $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\circ}$)
(credit $2 \mathrm{Br} \longrightarrow \mathrm{Br}_{2}$)
(ignore "chain" in front of the word termination)
1
(b) (i) Fractional distillation OR fractionation
(credit gas-liquid chromatography, GLC)
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{3}+6 \mathrm{Br}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{Br}_{6}+6 \mathrm{HBr}$ (credit $\mathrm{C}_{2} \mathrm{H}_{6}$ for ethane)
(c) Correct structure for $\mathrm{CF}_{2} \mathrm{BrCF} F_{2} \mathrm{Br}$ drawn out
(penalise "Fl" for fluorine)
(d) (i) 2-bromo-2-chloro-1,1,1-trifluoroethane OR 1-bromo-1-chloro-2,2,2-trifluoroethane
(insist on all numbers, but do not penalise failure to use alphabet)
(accept "flourine" and "cloro" in this instance)
Page 6
(ii) 197.4 only
(ignore units)
(iii) $\quad(57 / 197.4 \times 100)=28.9 \%$ OR 28.88%
(credit the correct answer independently in part (d)(iii), even if (d)(ii) is blank or incorrectly calculated, but mark consequential on part (d)(ii), if part (d)(ii) is incorrectly calculated, accepting answers to 3sf or 4sf only) (penalise 29\% if it appears alone, but not if it follows a correct answer)
(do not insist on the \% sign being given)
(the percentage sign is not essential here, but penalise the use of units e.g. grams)

M4. (a) M1 (Free-) radical substitution
Both words needed

M2 $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$

M3 $\mathrm{Cl} \bullet+\mathrm{CH}_{4} \rightarrow \cdot{ }^{-} \mathrm{CH}_{3}+\mathrm{HCl}$

M4 $\mathrm{Cl}_{2}+\cdot \mathrm{CH}^{3} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl} \cdot$

M5 $\mathrm{CH}_{4}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+3 \mathrm{HCl}$
Penalise the absence of a radical dot once only Ignore termination steps except, if and only if both M3 and $M 4$ do not score, then accept for one mark $\mathrm{Cl} \cdot+\cdot \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}$
(b) M1 UV (light)/ sunlight / light / UV radiation

M2 $\underline{\underline{C-C l}}$ or carbon-chlorine bond breakage

OR

homolysis of $\underline{C-C l}$
OR
equation to show a chlorine-containing organic
compound forming two radicals
For M1 and M2, ignore use of Cl_{2}, but credit UV and $\mathrm{C}-\mathrm{Cl}$ bond breakage if seen

M3 $\mathrm{Cl} \bullet+\mathrm{O}_{3} \rightarrow \mathrm{ClO} \bullet+\mathrm{O}_{2}$

M4 CIO• $+\mathrm{O}_{3} \rightarrow \mathrm{Cl} \bullet+2 \mathrm{O}_{2}$
Ignore other equations
Penalise the absence of a radical dot once only
Accept radical dot anywhere on either radical.

M5 Any one from

- Combination $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
- Stated that Cl• / chlorine atom is regenerated / not used up
- \quad Stated that the $\mathrm{Cl} \cdot /$ chlorine atom is unaffected by the process.

For M5 accept Cl• on both sides of the equation
M6 Stated that the role of the Cl• / chlorine atom is to find an alternative route OR lower E_{a} / activation energy
(c) M1 Halothane contains $\mathrm{C}-\mathrm{Cl} / \mathrm{Cl}$

OR
Desflurane does not contain $\mathrm{C}-\mathrm{Cl}$ bonds / Cl
OR
Desflurane contains C-F / F as the only halogen
Mark independently.
For M1, credit the idea that desflurane contains C-F bonds that are difficult to break OR that halothane contains $\mathrm{C}-\mathrm{Cl}$ bonds which are easy to break.

M2 Desflurane / molecules that have fluorine as the only halogen, cause no damage / do not deplete / do not react with the ozone (layer)
OR
Halothane / chlorine-containing molecules, damage / deplete / react with the ozone (layer)

$$
\text { M5. } \quad \text { (a) Functional group (isomerism) }
$$

(b)

M1 Tollens' (reagent)	M1 Fenling's (solution) or
(Credit ammoniacal silver nitrate OR	Benedict's solution
a description of making Tollens')	(Ignore $\mathrm{Cu}^{2+}(\mathrm{aq})$ or
(Ignore either AgNO_{3} or $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\right]$	CuSO_{4} on their own, but mark on
or "the silver mirror test" on their own, but mark M2 and M3)	to M2 and M3)
M2 silver mirror	M2 Red solid/precipitat
	(Credit orange or brown solid)
OR	

black solid/precipitate
(NOT silver precipitate)

M3 (stays) colourless
or no change or no reaction

M3 (stays) blue or no change or no reaction

Mark on from an incomplete/incorrect attempt at the correct reagent, penalising M1

No reagent, CE=0
Allow the following alternatives
M1 (acidified) potassium dichromate(VI) (solution)
M2 (turns) green
M3 (stays) orange/no change
OR
M1 (acidified) potassium manganate(VII) (solution)
M2 (turns) colourless
M3 (stays) purple/no change
For M3
Ignore "nothing (happens)"
Ignore "no observation"
(c) (Both have) $\mathrm{C}=\mathrm{O} O R$ a carbonyl (group)
(d) (i) (Free-) radical substitution ONLY

Penalise "(free) radical mechanism"
Page 9

(ii) Initiation
 $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \cdot$

Penalise absence of dot once only.

First propagation

$$
\mathrm{Cl} \bullet+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \bullet \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{HCl}
$$

$$
\mathrm{OR} \mathrm{C}_{3} \mathrm{H}_{8}
$$

Penalise incorrect position of dot on propyl radical once only.
Penalise $\mathrm{C}_{3} \mathrm{H}_{7} \bullet$ once only

Second propagation

$\mathrm{Cl}_{2}+\cdot{ }^{-} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \cdot$

OR

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$
Accept $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \bullet$ with the radical dot above/below/to the side of the last carbon.

Termination (must make $\mathrm{C}_{6} \mathrm{H}_{14}$)
 $2 \cdot \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
 Use of the secondary free radical might gain 3 of the four marks

(e) $\quad M_{\mathrm{t}}=\underline{44.06352}$ (for propane)
$M_{\mathrm{r}}=\underline{43.98982}$ (for carbon dioxide)
Mark independently
M1 a correct value for both of these $\underline{M}_{\text {v }}$ values.
M2 a statement or idea that two peaks appear (in the mass spectrum)
OR
two molecular ions are seen (in the mass spectrum).

